Zometool Project Series: the world's most powerful (and fun!) modeling system. Kids, educators, and Nobel-prize winning scientists all love Zometool: • it's unique, brilliant, beautiful

• all kits are compatible—more parts, more power!

 augranteed for life! "The mind, once stretched by a new idea, never regains its oriainal dimensions." - Oliver Wendell Holme.

CARBON. It's all over our planet: in aas. coal. diamonds. plastics... and all living things.

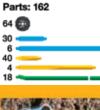
Compare graphite and diamond. Both are PURE CARBON but their properties are stunningly different. Discover why:

- Carbon is nature's construction toy
- Graphite works in pencils & lubricants
- Diamond is the hardest known natural material (and one of the loveliest)

PLUS: make amazing bubbles to show the structure of carbon atoms and diamond!

6.840.699 B2. Zome tool is a reaistered rademark of Zome lool Inc. Based on the 31-zone system discovered by Stev Baer 7omeworks

Corp., USA © 2008


US Patents RF 33 785

Pure Carbon

64 👩 Includes detailed instructions by Dr. Steve Yoshinaga

zome ool ... com

Structure Matters

Different forms of the same element are called allotropes (Greek: allos "different" + tropos "way"). Diamond and graphite, two of the best-known allotropes of carbon, are clearly put together in different ways!

Carbon allotropes include fullerenes, which have properties similar to graphite. The ring-like sheets of carbon atoms can form fascinating structures, such as a ball

a tube (nanotube) or a wide sheet (graphene)

Diamond structure

Clear, dazzlingly beautiful and harder than anything else on earth, diamond's properties have everything to do with its structure. The 4 hooks of each carbon atom share electrons with one hook from each of its 4 neighbors. Chemists call these connections single bonds, because each side only supplies one electron. Diamond structure is a "natural" for carbon, since

2

the atoms keep their tetrtahedral shape. But it's not easy to achieve: it takes immense pressure, and usually lots of time, for nature to make a diamond crystal. Diamonds are so rare and precious

The perfect 10

because conditions have to be perfect.

Diamond is the hardest naturally occurring material on earth. Because it scores a perfect 10 on the hardness scale (graphite scores 1-2!), diamond is used in dentistry, construction, mining and more. Whether you need a small hole drilled in your tooth, or a large tunnel drilled for a new subway, a diamond will lead the way. They may be a girl's best friend, but without diamonds many industries would "grind to a halt".

Doggie Diamonds

Scientists grow diamonds! Just take a tiny diamond "seed crystal", a little carbon, and subject them to extremely high pressure and temperature. You can even

rial diamond. Fido may not be able to fetch your slippers anymore, but he can still put a little sparkle in your life as

turn your beloved,

departed pet into

a synthetic memo-

a brilliant diamond. www.lifegem.com

Graphite structure

Soft, grey graphite also owes its properties to its structure. Like a stack of waxed paper, graphite consists of layers of slippery carbon sheets. The difference is the way its carbons bond: atoms in graphite form a grid of hexagons, like bathroom tiles. While diamond's molecular structure is 3-dimensional, a single sheet of graphite is almost 2-dimensional.

See "The Shadow Knows" on the other side to learn how to turn diamond into graphite!

START HERE!

books, iPods, fuels, food... even life. Carbon practically forms the structural basis of our world. Not only is this kit based on carbon - so are you!

Imagine a building

block so versatile it

could build almost

anything: bicycles,

aircraft, houses,

Carbon is so essential, it's earned its own field of study. Organic chemistry is a vital sphere of research involving carbon-based compounds as different as petroleum gas, plastics, and your DNA!

Why is carbon so important? It's all about structure. With this kit you can build two amazing structures formed solely by carbon atoms, graphite and diamond. Let's start with a carbon atom.

Tricky Tetrahedra!

Imagine tying four balloons together by their "necks" (or open ends). You'd have a nice model of a carbon atom. The

Bending bonding rules

Yellow struts in your diamond model are single bonds, while blue struts usually represent double bonds. But how can three double bonds in graphite connect to a single carbon? Carbon only has four hooks! Graphite's carbon rings (called aromatic rings, because molecules of many pleasant aromas contain them) use a hybrid of a single and a double bond. Electrons flow around the entire ring, not just between particular atoms. So remember: in flat,

BOND COLOR CODES

Bonds

* If blue struts form a ring of atoms in an

aromatic ring structure, then each bond acts as a hybrid single/double (=1.4) bond.

Triple Bond

Single Bond

Double/Hybrid

aromatic carbon rings, blue struts are hybrid bonds, not double bonds. The bonding rules are intact! The universe is safe!

Slippery and strong

Graphite is used for strength or lubrication. Sheets of graphite slide on each other, like molecular patches of silk. Graphite works better than oil in machines operating at very high or low temperatures or

THE GREATEST MOLECULAR BUILDING BLOCK IN THE UNIVERSE!

balloons represent *electron* "clouds" and the necks, all tied together, represent the dense nucleus of the carbon atom. It takes energy to hold a carbon atom together:

the positively charged nucleus pulls the negatively charged electrons in tight, like string tying the necks together. But the like-charged electrons, like static-electric balloons, try to get as far away from each other as they can.

Now build a Zometool model of the carbon atom. Use a black ball for the nucleus and 4 yellow struts for the electrons. You have to insert them so they're pointing as far away from each other as possible, just like the electron-cloud balloons described above. You've got it when the angle between all the struts is the same (109°, for angle-heads). Put a ball on the end of each strut and connect the balls with green struts, to get a triangular pyramid,

pressures. When reinforced by epoxy resin, graphite is one of the strongest

and most useful materials in the world. "Graphite composites" are extremely stiff, strong, and lightweight, and they expand very little when heated. Bi-

cycles, tennis rackets, and stealth bombers are made from graphite composites.

Carbon builds life

Key to diamond's hard beauty, carbon's tetrahedral structure is also used by many life molecules we know and love. Sugars, fats, hydrocarbons, and the membranes that hold our cells together are just some of the molecules with carbon tetrahedral bonds. The aromatic carbon ring that defines the structure of graphite is also in great demand: nature even uses carbon hexagons to form the structure of DNA, the very backbone of all life on our planet. Carbon is the greatest molecular building

called the *tetrahedron*. This shape is why carbon is the best and most universal molecular building block!

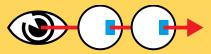
Many from one

Electrons shared between carbons are the "hooks" that hold them together. When the carbons bond in different ways, they form very different substances. Diamond and graphite are both pure carbon. One is a dazzling crystal, the hardest natural substance in the world. The other is dull grey, and so soft that it's used as a lubricant and in pencil lead. Carbons connected in a rigid 3-D crystalline lattice make diamond, while carbons bonded in flat sheets form graphite. It's not just the type of atoms, it's how the atoms are put together that determines the properties of a substance. It's all about structure!

block in the universe. You could use diamonds and graphite to build a cool robot, but nature uses carbon to build life. We're all carbon-units!

See the other side for step-by-step instructions to build diamond and graphite, activities with bubbles and shadows, and related Zometool projects.

GLOSSARY


Allotrope - each of two or more different physical forms in which an element can exist, such as graphite and diamond Aromatic Ring - molecule ring (usually carbon) with hybrid singledouble bonds, in which electrons flow around the entire ring Atom - basic unit of a chemical element consisting of a dense, positive ly charged nucleus surrounded by a negatively charged electron cloud Bond - strong force of attraction holding atoms together in a molecule or a crystal resulting from sharing (or transfer) of electron Crystal - any solid consisting of a symmetrical, ordered, three dimensional arrangement of atoms or molecules Diamond - clear, colorless crystalline form of pure carbon that is the hardest natural substance - a precious stone with industrial uses Electron – stable negatively charged subatomic unit, considered a cloud around the nucleus of an atom that causes chemical bonding Element - one of more than 100 substances arranged by the numbe of protons in the Periodic Table: all matter is composed of elements Graphite - grey, crystalline form of pure carbon that is used as a solid lubricant, in pencils, and in carbon composites Molecule - two or more atoms bonded together in some fashion; also called a chemical compound Nucleus - positively charged central core of an atom, containing most of its mass Structure - systematic arrangement of parts or components in a substance, body, or whole Tetrahedron - triangular pyramid with four triangular faces; also the structure of a carbon atom

1

ZOMETOOL RULES!

1 If it works, it works perfectly.

...and if it doesn't work, it doesn't work at all. Don't force Zometool components. You can bend a strut to fit it into a tight spot, but struts in finished models are always straight, never under tension.

Hint: you can tell which strut fits between two balls in a model by lining up the balls and looking through the holes. The holes show vou the shape of the strut that fits!

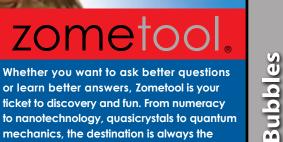
2 Don't break it apart; take it apart!

Take Zometool models apart by grasping a strut with your fingers and pushing the ball straight off

with your thumb. Twisting balls, pulling models apart or crushing them can cause parts to break!*

Diamond

Graphite


3 Leave the place cleaner than you found it.

It's always a good idea to clean up when you're done. If we work together, we can make the world better.

*We replace accidentally broken parts for free: visit www.zometool.com/warranty for details.

Our mission:

- make learning fun
- create value
- build a better world

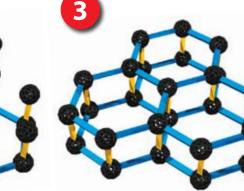
or learn better answers, Zometool is your ticket to discovery and fun. From numeracy to nanotechnology, quasicrystals to quantum mechanics, the destination is always the same: understanding our amazing universe.

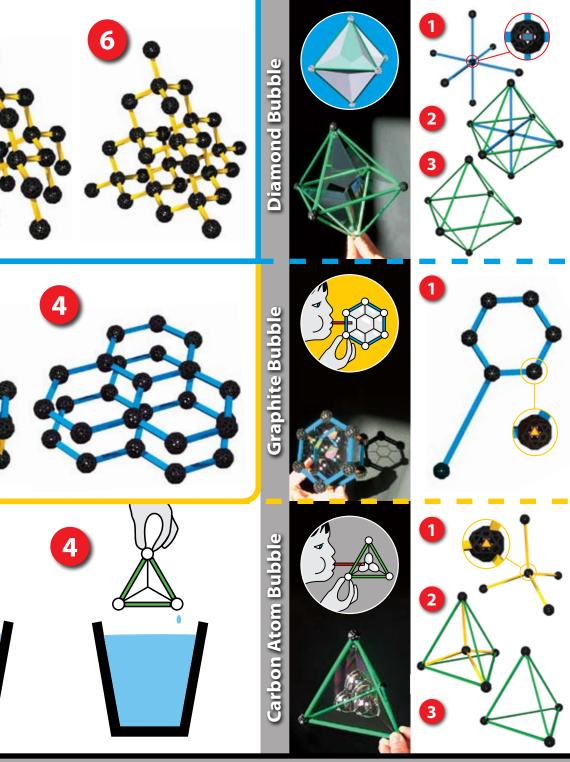
Discover more at zometool.com or call 888-966-3386 or 303-297-3387.

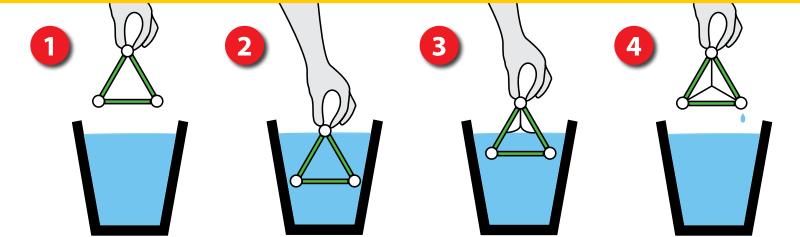
Zometool Pure Carbon Project - thanks to Dr. Steve Joshinaga, concept; Dr. Scott Vorthmann, vZome software for images; Anni Wildung, graphic design; Paul Hildebrandt, editing and project management. Contact paulh@zometool.com. Based on the 31-zone system discovered by Steve Baer, Zomeworks Corp., USA. © 2009 Zometool Inc.

Related Project Kits:

with a few other elements form the basis of life, molecules of pure carto model an almost limit- and learn the big ideas bon, including buckyless variety of important of molecular biology.




SWO ad balls and nanotubes.

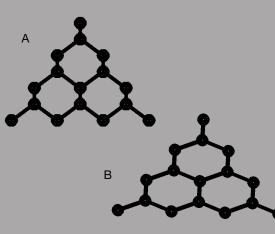


В

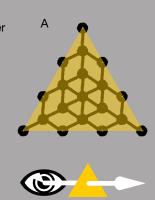
The shadow knows... how to turn diamond into graphite! Check it out!

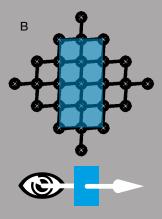
You need: • the diamond (A) and modified

2.5 GAL/10 L


1√2 CUP 125 ML

- graphite (B) models (right) • sunshine
- a projection surface, like a piece of white cardboard at least 30 x 45 cm (12" x 18")


Here's how to do it:


1) Hold the modified graphite model in one hand and diamond in the other.

2) Cast shadows of the two models side by side on the board (best if the board is perpendicular to the light rays so the shadow is not distorted — see pictures!) 3) Move the models until the two shadows look the same (they won't be exactly the same, but they're close).

Here are some other cool shadows you can make with the diamond model. The colored shape is the same as a strut pointing directly at the sun!

